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Abstract

Particulate matter (PM) is a chemically non-specific pollutant, and may originate or be derived from different

emission source types. Thus, its toxicity may well vary depending on its chemical composition. If the PM toxicity could

be determined based on source types, the regulation of PM may be implemented more effectively. A large number of

monitors began collecting PM less than 2.5 mm in diameter (PM2.5) mass samples for subsequent chemical speciation

starting 2000–2001 in the US. The data from this chemical speciation network can be useful for source-oriented

evaluations of PM health effects. However, there are several issues that need to be considered in the analysis and

interpretation of these data. One major issue is a monitor’s representation of regional, sub-regional, and local air

pollution exposures to the population in a city or metropolitan area. Because health outcomes in time-series air

pollution epidemiological studies are aggregated over a wide geographical area, regional PM pollution may have

smaller errors in exposure estimates than more spatially varying local pollution. However, the relative strength of

association between source-apportioned PM and health outcomes may not be interpretable as the relative causal role of

the source types. To our knowledge, there has not yet been a systematic and quantitative evaluation of this issue. In this

study, we attempt to evaluate this issue by analyzing newly available PM2.5 speciation data from three monitors (a few

miles apart) in New York City during 2001–2002. The strongest temporal correlations across the three monitors were

found for the individual PM components that are related to secondary aerosols (e.g., S, NH4). We also conducted

source-apportionment of the data using absolute principal component analysis and positive matrix factorization. We

identified four major source/pollution types: (1) secondary (largely regional) aerosols; (2) soil; (3) traffic-related; and (4)

residual oil burning/incineration, in each of the three monitors. The estimated source-apportioned PM2.5 mass showed

generally the highest monitor-to-monitor correlation for the secondary aerosol factor (r range: 0.72–0.93). The

correlation for the more localized traffic-related factor was more variable (r range: 0.26–0.95). The estimated mean

PM2.5 mass contributions by source/pollution type across the monitors varied least for the secondary aerosol factor.

The extent of variability in the source-apportioned PM2.5 mass by the monitor was comparable to that from the

difference due to the two source-apportionment techniques used. The implication of the results of our study is that a

source-oriented evaluation of PM health effects needs to take into consideration the uncertainty associated with spatial

representative of the species measured at a single monitor.
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1. Introduction

Numerous studies have reported short-term associa-

tions between ambient air pollution concentrations and

mortality and morbidity (e.g., see US EPA, 1996).

Particulate matter (PM) was often implicated as the

most significant predictor of the health outcomes among

the air pollutants in these studies. However, PM is a

chemically non-specific pollutant, and may originate or

be derived from various emission source types. Thus, its

toxicity may well vary depending on its source and

chemical composition. If the PM toxicity could be

determined based on source types, the regulation of PM

may be implemented more effectively.

One natural progression of the PM health effects

research is therefore to conduct a source-apportionment

of PM using chemical speciation data (i.e., trace

element, ions, organic and elemental carbons, etc.),

and to examine the associations between source-appor-

tioned PM (or underlying factor without mass attribu-

tion) and health outcomes, rather than with PM mass

overall. There have been only a few studies that

conducted such analysis (Ozkaynak and Thurston,

1987; Özkaynak et al., 1996; Tsai et al., 2000; Laden

et al., 2000; Mar et al., 2000). These studies have

provided suggestive evidence that PM from certain

combustion sources (i.e., secondary aerosols and traffic),

but not other sources (e.g., soil), were associated with

daily mortality. However, the availability of data sets

that have collected appropriate speciation data has been

limited to date, and the expected regional variability in

source types makes it difficult to interpret these results in

a straightforward manner.

Fortunately, a large number of monitors have now

started collecting chemical speciation data from PM2.5

filters starting in 2000–2001 in the US PM2.5 chemical

speciation network is one of the monitoring require-

ments set forth by the Federal Register (62 FR 38763),

as part of the PM2.5 National Ambient Air Quality

Standard (NAAQS) review completed in 1997 (US EPA,

1999). Each chemical speciation monitor measures: (1)

PM2.5 particulate mass; (2) anions (sulfate, nitrate) and

cations (particulate ammonium, sodium, and potassium)

by ion chromatograph; (3) trace elements by energy

dispersive X-ray fluorescence (EDXRF); and (4) total

carbon including organic, elemental, and carbonate

carbon by thermal optical analysis (US EPA, 1999).

Each state is required to submit the speciation data to

EPA’s Aerometric Information Retrieval System

(AIRS) three months after the collection of samples.

Thus, the data from this chemical speciation network

will provide a great research opportunity for source-

oriented evaluations of PM health effects.

However, there are several outstanding issues that

need to be taken into consideration when interpreting

the results from source-apportionment and health effects
analysis of these PM2.5 speciation data. One major issue

is the relative measurement error associated with each of

the speciation components, and each of the source-types

that are identified. The uncertainty associated with each

measurement is estimated for certain chemical analyses

(e.g., EDXRF). In fact, a source-apportionment techni-

que, positive matrix factorization (PMF, Paatero and

Tapper, 1993), uses such analytical uncertainty informa-

tion to weight each observation. However, from an

epidemiological point of view, there are other types of

errors that may distort the potential associations

between source-apportioned PM and the health out-

come of interest. For example, in population-based

time-series analysis, daily fluctuations of PM (or source-

apportioned PM) are correlated with daily fluctuations

of mortality or morbidity counts that are aggregated for

the entire city. Often, the PM data come from a single

monitor, or at most a few monitors per urban area.

Most of the past source-apportionment analyses relied

on data from a single monitor in a city. In such cases, it

is possible that a single monitor does not represent each

of the source types equally precisely and/or accurately

for the population exposure. For example, regional

secondary aerosols are usually more homogeneously

distributed across a city than particles that originate

from local mobile sources or point sources. In such

cases, the relative strength of association between

source-apportioned PM and health outcomes may not

be interpretable as the relative causal role of the source

types. To our knowledge, there has not yet been a

systematic and quantitative evaluation of this issue. In

this study, we attempt to evaluate this issue by analyzing

data from three monitors in New York City that

collected PM2.5 chemical speciation measurements dur-

ing 2001–2002 study period.
2. Materials and methods

2.1. Data

The speciation data in New York City during 2001-

2002 period were downloaded from New York State

Department of Environmental Conservation (NYSDEC)

Web site (http://www.dec.state.ny.us/website/dar/baqs/

pm25data.html). There were three monitors that col-

lected PM2.5 speciation data every-third-day: New York

Botanical Gardens (NYBG) in Bronx, I.S. 52 in Bronx,

and Queens College (QC) in Queens. Fig. 1 shows the

locations of these three monitors in New York City. The

distance between these three sites were 1.8 (NYB-

G–IS52), 4.7 (NYBG–QC), and 5.7 (IS52–QC) miles.

The Botanical Gardens site used a Met One

sampler, whereas the other two sites used R and P

2300 samplers. Data for the overlapping sampling

period of April 2001–December 2002 were analyzed.

http://www.dec.state.ny.us/website/dar/baqs/pm25data.html
http://www.dec.state.ny.us/website/dar/baqs/pm25data.html
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Fig. 1. Map of New York City and the three monitors.
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The actual complete full observations (days with all

species measured) during this period were 170 days at

IS52, 171 days at QC, and 189 days at NYBG. The

scheduled sampling days were the same for these

monitors. Each chemical speciation monitor measured:

(1) PM2.5 particulate mass; (2) anions (sulfate, nitrate)

and cations (particulate ammonium, sodium, and

potassium) by ion chromatograph; (3) 48 trace elements

by EDXRF; and (4) total carbon including organic,

elemental, and carbonate carbon by thermal optical

analysis. The analytical uncertainty values were not

included in the original data from NYDEC or from the

EPA’s AIRS data that we also retrieved for the same

monitors. However, the minimum detection limit

(MDL) for each of the PM components was available

from AIRS database, allowing us to compute the

percentage above MDL for each series.

While the study period included 11, September, 2001

World Trade Center disaster, the every-third-day

sampling of the speciation monitor missed the 11th

and the highest impact day (12th September), and the

data for the scheduled 13th and 16th September were

missing from the three monitors’ data sets. Based on a

preliminary analysis of the daily speciation measure-

ments a downtown Manhattan monitor near the World

Trade Center and NYU speciation measurements

(Thurston et al., 2003) and an examination of time-
series plots of speciation measurements at a monitor

(Hunter College) in mid-town Manhattan (these data

were not analyzed for this manuscript), the strong

impact of World Trade Center collapse/fires was

observed at Hunter College monitor on 12 September.

While the impact of the demolition and continued

burning were observed at the downtown monitor, its

influence on measurements at the Hunter College

monitor was minimal. Thus, we believe that the impact

of the World Trade Center disaster is minimal on the

three monitors’ data that were analyzed in this study.

Another notable event during the study period was

the 4 July (Independence Day in US) weekend, 7 July

(Sunday), 2002, when high values of PM2.5 and certain

species (an apparent impact of a Quebec forest fire) were

observed. We conducted analyses with and without

these dates, but since the results were not qualitatively

different, we present the results with these two days

included.

2.2. Methods

The main objective of this analysis is to examine the

difference in concentration of the speciated PM2.5

constituents measured across three monitors, and to

compare the source apportionment results from these

three monitors. It should be noted that differences in
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concentration of a given species between two monitors

could be due to either: (1) actual difference in ambient

concentration, or; (2) analytical measurement errors.

The temporal correlation and difference in concentra-

tions between a pair of monitors are influenced by both

of these two components, but we did not attempt to

separate out these components. However, we did

examine how the monitor-to-monitor correlation was

affected by the percentage above MDL, a crude

indicator of the ‘‘signal-to-noise’’ ratio.

There are two components of any differences between

measurements made at two monitors: one is the

temporal correlation of the measurements; and the

other is the quantitative difference in concentration.

Thus, measurements made at two monitors can be

perfectly correlated over time, but at the same time can

have a large difference in concentration if one monitor

always measures higher concentrations than the other

monitor does. From an epidemiological point of view,

the former is important for the strength of association,

while the second is important for the effect size (e.g., risk

per mgm�3). Therefore, for each of chemical speciation

data (56 species in total), temporal fluctuations in each

pair of the three monitors were characterized in two

ways: (1) temporal correlation; and, (2) coefficient of

variation (C.V.) of the daily difference as a fraction of

the overall mean (Evans et al., 1984).

Using each of these three monitors’ data, source

apportionment was first conducted using Absolute

Principal Component Analysis (APCA) (Thurston

and Spengler, 1985). Briefly, APCA employs a conven-

tional (off the shelf) principal component analysis

(PCA), with correlation matrix as input, followed

by any factor rotation of choice. Then, for each of

the principal components, the resulting scoring coeffi-

cients are used to compute a factor score for a

hypothetical case where all the trace elements are

zeros (i.e., a day without any pollution). This ‘‘offset’’

is then added to the all factor scores so that the

factor scores are generally positive deviations from

the zero pollution case. The idea is that, when the

individual elements from the source are zeroes, so

should be the composite mass contribution (i.e., factor

score) from the source. For an illustrative example,

see Thurston and Spengler (1985). Thus, in contrast

to the other recently developed source apportionment

techniques, PMF (Paatero and Tapper, 1993) or

SAFER/UNMIX (Kim and Henry, 2000) in which

positive mass concentration is used as a constraint

for factor analytic solution, in APCA, an adjustment

is made after the PCA and rotation so that mass

contributions from sources are expected to, but

not forced to be, positive (note that, depending on

the scoring coefficients and the underlying elemental

concentrations, the resulting APCA scores may take

negative values, especially on very clean days).
We initially used APCA to analyze the data, but in

response to reviewers’ comments, we subsequently

analyzed the data using PMF for comparison, as well.

Note that, since we did not have the analytical

uncertainty data for each observation, we used 5%

of the measured value plus the minimum detection limit

(to avoid near zero uncertainty at very low values) as

estimates of the analytical uncertainty. We did not

include all of the available PM trace constituents in the

APCA analysis. The PM constituents that we could not

use for identifying any specific source types were

excluded. When redundant tracers were available, only

one of them was included (e.g., SO4 and S). Thus, the

included species were: Al, As, Ba, Br, Cd, Ca, Cl, Cr,

Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, P, K, Se, Si, Na, Sr, S,

Ti, V, Zn, elemental carbon (EC), organic carbon (OC),

NH4 ion, and NO3 ion. The criterion to decide the

numbers of source factors to be retained depends on the

objective of the study. While the common practice and

program default in PCA appear to choose the ‘‘eigen-

value=1’’ cut-off (i.e., a variable’s average ‘‘share’’ of

contribution to total variance), it is possible that a factor

with an eigenvalue less than 1 can significantly

contribute to PM2.5 mass. Thus, we initially explored

the solutions in which factors with eigenvalues less

than 1 were retained. However, those solutions did not

provide any additional factors that could significantly

contribute to PM2.5 mass concentration. Therefore,

with no other criteria to employ, the ‘‘eigenvalue=1’’

cut-off criterion was used to decide the number of

factors to retain in this case. In order to explore a range

of orthogonal to oblique rotations, we used the

Harris–Kaiser rotation (Harris and Kaiser, 1964). We

applied several sets of obliqueness, but with no changes

in the interpretability of the resulting factor pattern, an

essentially orthogonal rotation (Harris–Kaiser rotation

with power=0.95) was chosen. PM2.5 concentrations

were then regressed on these factor scores. Resulting

regression coefficients were used to compute daily

contributions to PM2.5 from each of the source types.

In our PMF analysis, we used the same sets of PM

species as those used in APCA analysis to make a

comparison more direct. PM2.5 concentrations were then

regressed on the resulting factor scores from PMF. The

statistical package, SAS (SAS Institute Inc., Cary, NC),

was used to run PCA and regressions. We obtained

PMF program from Dr. Paatero from University of

Helsinki who wrote the program (Paatero, 1998).

To identify and ‘‘name’’ source/pollution type(s) for

each factor is not straightforward. Except for fairly

unambiguous source/pollution types such as soil (Al, Fe,

Si, Ti) or secondary sulfate (NH4, SO4), major portion

of which in this region is transported sulfate from coal

combustion, there is always a chance that a source is

misidentified. Therefore, without an exhaustive con-

firmatory analysis, in this analysis we only suggest
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source types for each factor. To aid in identifying

source/pollution types, we relied on: (1) past source

apportionment literature; (2) EPA’s source profile

repository software, SPECIATE (version 3.1); and

(3) day-of-week pattern of the individual PM2.5 species

and source-apportioned PM2.5. Since we conducted

APCA analysis first and went through the process of

‘‘naming’’ the factors, our PMF analysis was not an

‘‘independent’’ analysis. We identified similar factors

and compared the estimated source-apportioned PM2.5

mass concentrations.
3. Results

Mean concentrations for PM2.5, and key ions

and trace elements for the three monitors are shown in

Table 1. PM2.5 and species associated with secondary

aerosols showed comparable levels across the three

monitors. It can be seen that the secondary sulfate and
Table 1

Mean (standard deviation) of selected PM2.5 species from three moni

Units NYBG (n ¼ 189) I

PM2 5 (mg m�3) 15.8 (9.8)

EC (mg m�3) 1.3 (0.6)

OC (mg m�3) 5.0 (3.5)

NH4 (mg m�3) 1.7 (1.4)

NO3 (mg m�3) 1.9 (1.8)

SO4 (mg m�3) 4.2 (3.3)

Al (ng m�3) 20.4 (44.7)

As (ng m�3) 1.1 (1.4)

Ba (ng m�3) 33.1 (25.5)

Br (ng m�3) 3.5 (2.7)

Cd (ng m�3) 1.8 (3.3)

Ca (ng m�3) 50.7 (30.8)

Cl (ng m�3) 17.2 (67.1)

Cr (ng m�3) 1.4 (1.4)

Co (ng m�3) 0.8 (1.1)

Cu (ng m�3) 4.4 (4.1)

Fe (ng m�3) 106.9 (58.6) 1

Pb (ng m�3) 6.0 (5.7)

Mg (ng m�3) 8.0 (16.2)

Mn (ng m�3) 2.5 (2.1)

Mo (ng m�3) 1.4 (2.1)

Ni (ng m�3) 24.2 (20.7)

P (ng m�3) 6.3 (9.3)

K (ng m�3) 48.6 (58.1)

Se (ng m�3) 1.3 (1.5)

Si (ng m�3) 97.9 (111.6) 1

Na (ng m�3) 90.0 (110.2)

Sr (ng m�3) 1.1 (1.6)

S (mg m�3) 1.4 (1.0)

Ti (ng m�3) 6.8 (4.9)

V (ng m�3) 6.4 (3.6)

Zn (ng m�3) 32.4 (23.9)
nitrate together (NH4, SO4, and NO3) explain about

50% of the PM2.5 mass. The second largest constituent

was OC (25–30%).

Fig. 2 shows temporal correlation for each pair of the

three monitors for each of the 57 PM2.5 components,

sorted by the smallest of the three correlations. The

constituents of the secondary aerosols (i.e., S, NO3, SO4,

NH4) showed consistently high (r40:9) temporal

correlations across three monitors. The main constitu-

ents of soil showed a range of correlation, from high (Al,

r40:8) to moderate (Si, Fe, and Ti, with r � 0:720:85).

While OC, a major contributor to traffic related PM,

showed high temporal correlations across three moni-

tors, the other traffic related carbon fraction, EC, which

is sometimes considered to be a good tracer for diesel,

showed poorer correlations (r ¼ 0:3020:43). We also

computed the pair-wise C.V. (daily difference) for each

pair of the three monitors, sorted by the largest of the

three C.V.s (results not shown). Again, those with

smallest concentration differences tend to be those
tors April 2001 to December 2002

S52 (n ¼ 170) QC (n ¼ 171)

16.1 (10.1) 15.1 (10.2)

1.1 (0.7) 0.7 (0.5)

4.0 (3.1) 3.7 (3.3)

1.9 (1.6) 1.9 (1.5)

2.2 (1.9) 2.0 (1.7)

4.1 (3.1) 4.3 (3.5)

14.4 (39.1) 13.4 (36.3)

0.9 (0.9) 0.9 (0.8)

18.6 (12.0) 19.3 (12.8)

4.5 (3.4) 4.0 (2.7)

1.0 (1.5) 1.0 (1.4)

53.5 (25.3) 45.9 (27.5)

49.3 (183.0) 40.9 (217.2)

0.7 (0.6) 0.7 (1.0)

0.7 (1.0) 0.5 (0.9)

4.0 (2.8) 3.6 (2.8)

17.6 (59.9) 105.1 (66.6)

6.9 (7.0) 5.1 (4.0)

6.7 (20.1) 5.9 (12.6)

2.1 (1.7) 2.3 (1.9)

0.8 (1.0) 0.8 (0.9)

18.4 (12.8) 14.3 (13.1)

3.7 (6.9) 3.0 (6.0)

52.1 (56.4) 49.6 (52.4)

1.4 (1.6) 1.4 (1.5)

07.1 (88.5) 102.5 (113.6)

61.1 (77.6) 69.0 (85.8)

0.8 (1.0) 0.8 (0.9)

1.4 (1.0) 1.5 (1.0)

5.4 (4.1) 5.3 (3.9)

6.1 (4.0) 6.0 (4.0)

32.1 (21.3) 27.6 (21.4)
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IS52 vs. NYBG

IS52 vs. QC

NYBG vs. QC
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Fig. 2. Temporal correlation of PM components across 3 monitors, stored by the smallest of the three correlations.

K. Ito et al. / Atmospheric Environment 38 (2004) 5269–52825274
associated with secondary aerosols (i.e., S, NO3, SO4,

NH4). Generally, the ranking of species for C.V.s was

similar to that of temporal correlation, indicating that

those species that correlated well were also closer in

concentrations across sites.

We computed the median percentage of observations

above the corresponding MDL for each species, and

plotted them against the corresponding median monitor-

to-monitor correlations in Fig. 3. It can be seen that

many of the trace elements that showed low monitor-to-

monitor correlations were also the ones with small

percentages above the MDL. However, it is also clear

that some PM species (e.g., EC, Ni, Mn, and Pb) showed

low monitor-to-monitor correlations despite their high

percentages above the MDL, suggesting that the

observed discrepancies in concentrations and/or their

temporal fluctuations are real.

Tables 2–4 show rotated factor patterns (i.e., factor

loadings, or the correlation of each specie with that

factor) for the data from each of the three monitors

using APCA. As mentioned in Methodology section, we

also examined the cases with larger numbers of factors

retained (with minimum eigenvalues smaller than 0.5),

but those results did not provide additional factors that

could significantly explain PM2.5. Therefore, we chose

the results with minimum eigenvalues larger than 1. This

criterion resulted in 8 factors for all of the three

monitors. It can be seen that, while the order of factors

(i.e., eigenvalues after rotation) slightly varied, the three
monitors’ results shared qualitatively similar factors.

For example, a factor with high loadings on trace

elements associated with crustal material (Al, Ca, Si, and

Ti) was found for all three sites (Factor 2 for NYBG and

QC; Factor 1 for IS52). The secondary sulfate factor,

with high loadings on NH4 and S, was also present for

all three monitors. There was a factor with high loadings

for OC, EC, and K for IS52 (Factor 5) and QC (Factor

4); for NYBG, OC and K (but not EC) shared a factor

(Factor 4). The day-of-week pattern for EC at all three

sites showed somewhat higher levels during the week

than on the weekend, possibly reflecting diminished

traffic (especially trucks), whereas OC’s showed slightly

higher levels on the weekend especially at NYBG site.

The day-of-week pattern for this factor followed that of

OC at NYBG and IS52, but the pattern was not clear at

QC. Thus, while we considered this factor to be

associated with traffic-related PM, there remained some

uncertainty in naming this factor. Also, all the three

monitors showed a factor that appeared to be a mixture

of sources with signature elements for residual oil

burning (Ni, V) and incineration (Cl, Pb, Zn) (Factor

1 for NYBG; Factor 3 for IS52; and, Factor 1 for QC).

Nitrate loading was either with the oil burning/

incineration factor (NYBG and QC) or split between

oil burning/incineration factor and secondary sulfate

factor (IS52). A factor with loadings for Na and Mg,

present in all three monitors’ data, may be sea salt (for

example, see the sea salt composition in Seinfeld and
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Table 2

Factor loadings for NYBG data using APCA

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8

EC 0.74 0.17 0.11 0.08 0.12 �0.04 �0.07 0.11

OC 0.15 0.06 0.16 0.89 �0.05 �0.02 0.01 �0.04

NH4 0.40 0.17 0.78 0.13 �0.07 0.15 �0.01 0.05

N03 0.74 0.03 0.32 0.08 0.00 0.24 0.03 0.12

Al �0.14 0.84 �0.140 0.14 0.03 0.00 0.06 0.07

As 0.18 �0.05 0.00 �0.02 �0.03 0.02 �0.04 0.85

Ba 0.17 0.09 �0.04 0.07 �0.56 �0.41 0.13 0.21

Br 0.60 0.16 0.40 0.37 �0.02 0.13 �0.06 0.09

Cd 0.04 �0.05 �0.05 �0.11 0.15 0.55 0.28 �0.27

Ca 0.42 0.78 0.17 0.01 �0.02 0.09 �0.01 �0.02

Cl 0.55 �0.06 �0.02 0.09 �0.14 0.44 0.02 0.11

Cr �0.11 �0.02 0.57 �0.13 0.08 �0.19 0.07 �0.07

Co 0.38 �0.10 �0.02 �0.01 0.59 0.23 0.08 0.25

Cu 0.29 0.18 0.26 0.04 �0.13 0.64 �0.18 0.14

Fe 0.38 0.77 0.28 0.09 0.01 �0.02 �0.07 �0.07

Pb 0.70 0.14 0.1 0.23 0.01 �0.06 �0.13 �0.31

Mg �0.05 0.25 �0.13 0.08 0.10 �0.13 0.64 �0.21

Mn 0.04 0.46 0.29 0.36 0.36 �0.22 0.07 0.25

Mo 0.00 0.05 �0.07 �0.16 0.14 0.19 0.53 0.15

Ni 0.68 0.01 �0.16 �0.16 0.07 �0.01 0.27 0.05

P 0.13 �0.10 �0.08 0.01 0.87 �0.17 �0.08 �0.05

K 0.08 0.46 �0.02 0.80 0.03 0.06 0.05 0.02

Se 0.50 0.11 0.28 0.29 0.05 0.01 �0.06 0.35

Si 0.02 0.92 0.12 0.0 �0.02 0.0 0.02 �0.01

Na �0.06 �0.09 0.09 0.10 �0.44 �0.08 0.71 0.02

Sr �0.13 0.25 0.12 0.09 �0.04 0.62 �0.130 0.08

S 0.10 0.26 0.85 0.12 �0.06 0.07 �0.04 �0.02

Ti 0.04 0.84 0.12 0.16 �0.23 0.00 0.03 �0.06

V 0.77 0.17 0.25 0.03 0.02 �0.11 0.00 0.07

Zn 0.83 0.06 �0.02 0.09 0.20 0.05 �0.09 0.16
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Pandis, 1998). A factor with loadings for Co and P were

also present in all three monitors, but a close examina-

tion of the time-series of Co and P suggests that their

correlation is in part due to a shared lack of signal in

earlier part of the study period, which may be spurious.

The remaining factors were unique to each monitor’s

results. In PMF analysis, we attempted runs with 6, 7,

and 8 factor solutions for each of the three monitors’

data. Factor loadings are not standard output of PMF,

but we computed them by calculating the correlation

between the original PM species and the ‘G’ matrix

output from PMF (results not shown). Other than the

choice of number of factors, we used default setting

in PMF analysis. Since the 6, 7, and 8 factor solutions

all showed the four major factors that are qualita-

tively similar to those observed in APCA results, we

chose 8 factor solutions for further analysis. Each

monitor’s PM2.5 was then regressed on the eight factors

simultaneously.

For all the three monitors, only four major factors

(that are also common to the three monitors) con-

tributed substantially (i.e., more than 1mgm�3) to the
PM2.5 mass in APCA. Table 5 shows a summary of the

estimated mean contributions to PM2.5 from the four

major source types for both APCA and PMF results. As

expected, the least variability across sites was seen for

secondary aerosols. There appears to be no clearly

systematic difference between the two methods except

the soil factor for which PMF consistently showed

smaller estimated PM2.5 mass concentrations. Table 6

shows inter-correlation among the resulting source-

apportioned PM2.5 for both APCA and PMF methods.

Note that the APCA factors within each monitor were

minimally correlated (ro0.1) because of the choice of

the nearly orthogonal rotations, whereas in PMF

results, the correlation among factors over time at each

site were more correlated (up to r ¼ 0:35). In terms of

correlation of the same source-type factors across

monitors and methods, the estimated secondary sulfate

factor was again most strongly correlated across

monitors and methods (r range: 0.72–0.93). The soil

factor (r range: 0.52–0.93) and residual oil/incineration

factor (r range: 0.49–0.90) showed generally smaller

correlation than secondary sulfate factor. The poorest
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Table 3

Factor loadings for IS52 data using APCA

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8

OC 0.10 0.16 0.06 �0.04 0.93 �0.08 0.02 0.04

NH4 0.20 0.87 0.21 �0.08 0.09 �0.06 �0.01 �0.01

NO3 0.02 0.56 0.59 0.11 0.12 0.06 0.02 0.16

Al 0.80 �0.09 �0.12 0.09 �0.01 0.42 0.01 0.07

As �0.05 0.58 0.11 0.15 0.09 0.06 �0.22 0.20

Ba 0.20 0.04 0.15 �0.37 0.03 0.01 �0.60 0.12

Br 0.22 0.53 0.45 0.02 0.20 �0.02 �0.09 0.36

Cd 0.08 �0.10 0.08 �0.05 0.11 �0.15 0.65 0.04

Ca 0.69 0.28 0.0 0.09 0.35 �0.04 �0.02 0.06

Cl 0.00 0.10 0.79 �0.16 0.03 0.13 0.28 �0.10

Cr 0.05 0.38 0.01 0.26 �0.05 �0.01 0.43 0.11

Co �0.03 0.03 0.41 0.75 0.04 0.00 0.06 0.14

Cu 0.33 0.60 0.29 �0.02 0.24 0.12 0.19 0.17

Fe 0.71 0.36 0.40 0.11 0.11 �0.10 �0.18 �0.02

Pb 0.08 0.26 0.33 0.14 0.21 �0.06 �0.07 0.63

Mg 0.10 �0.04 �0.09 0.00 �0.12 0.88 0.01 0.04

Mn 0.51 0.20 0.07 0.46 0.12 �0.18 �0.37 0.22

Mo �0.07 0.18 0.12 0.43 0.07 0.42 0.31 �0.30

Ni 0.06 0.13 0.83 0.33 0.03 �0.04 �0.13 0.07

P �0.05 �0.13 0.11 0.84 �0.06 �0.14 0.05 �0.01

K 0.51 0.01 0.00 0.01 0.71 0.00 0.10 0.24

Se 0.11 0.62 0.40 0.20 0.08 0.01 0.01 0.42

Si 0.85 0.23 �0.03 �0.07 0.10 0.00 0.14 0.02

Na �0.05 �0.06 0.16 �0.25 �0.03 0.76 �0.12 �0.08

Sr 0.57 0.17 �0.01 0.26 0.19 �0.04 0.30 0.13

S 0.30 0.85 �0.05 �0.11 0.08 �0.11 �0.01 �0.08

Ti 0.88 0.16 0.09 �0.23 0.08 �0.04 �0.13 �0.04

V 0.24 0.45 0.57 0.16 0.07 0.01 �0.25 �0.04

Zn 0.15 0.13 0.69 0.31 0.15 �0.10 �0.07 0.28

K. Ito et al. / Atmospheric Environment 38 (2004) 5269–5282 5277
correlation among the four major sources was found for

the factor that we considered as traffic related (r range:

0.26–0.95), although some monitors showed high

correlations between the methods. Fig. 4 shows time-

series plots of the resulting source-apportioned PM2.5

mass concentrations for the four major source types for

both APCA and PMF results for the QC monitor. It can

be seen that the estimated PM2.5 mass concentrations for

APCA and PMF generally concur well with occasional

notable outliers (e.g., the traffic-related PM2.5 on July

2002). Note also that there are some negative PM2.5

values in the APCA results, although their magnitudes

are small.
4. Discussion

The results from this study showed that the temporal

correlation across monitors in NYC varied considerably

(essentially zero to over 0.9) across individual PM2.5

species, indicating that the precision of population

exposure estimates for specific elements can vary

depending on the species. As expected, the constituents
of secondary aerosols showed consistently high (r40:9)

temporal correlations across three monitors. Other

PM2.5 species that are constituents of major source

types (soil, traffic, oil burning, and incineration) showed

low to high correlation (r � 0:420:9) within the

relatively short separation distances (�2–6 miles)

between monitors. For example, the temporal correla-

tion for EC (sometimes considered to be a component of

diesel exhaust) across three monitors ranged between

0.36 and 0.47. This indicates that daily fluctuations of

the source type(s) represented by this species could not

be precisely estimated for population exposure for a

larger geographic boundary (i.e., the entire city). Thus, if

a single monitor’s or a few monitors’ data are used to

estimate the entire city’s population exposure, then the

potential health effects of individual PM species that

have low monitor-to-monitor correlation such as EC

would be masked or underestimated compared to PM

species that have high monitor-to-monitor correlation

(e.g., sulfate).

A composite pollution index (e.g., factor-analysis

derived source-apportioned PM mass concentrations),

rather than a individual PM species, may be more useful
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Table 4

Factor loadings for QC data using APCA

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8

EC 0.38 0.05 0.19 0.60 0.03 �0.09 0.27 0.16

OC 0.02 0.08 0.25 0.84 0.02 0.21 �0.11 �0.05

NH4 0.25 0.16 0.87 0.0 �0.03 �0.11 �0.04 �0.01

NO3 0.74 �0.01 0.44 0.04 0.09 0.01 �0.02 �0.16

Al �0.12 0.89 �0.03 0.08 0.12 0.07 �0.08 �0.03

As 0.37 0.14 0.20 0.24 0.22 0.12 0.25 �0.33

Ba 0.09 0.11 0.01 �0.02 �0.24 0.16 0.75 0.03

Br 0.52 0.20 0.62 0.25 0.01 0.20 0.05 0.08

Cd 0.22 �0.06 0.0 0.29 �0.12 �0.11 �0.52 0.36

Ca 0.51 0.62 0.15 0.32 0.06 0.07 0.14 0.10

Cl 0.74 0.03 �0.03 0.08 �0.36 0.01 �0.31 0.14

Cr 0.07 0.00 0.04 �0.06 0.12 0.11 0.00 0.86

Co 0.71 0.01 �0.09 �0.01 0.0 �0.03 �0.18 �0.04

Cu 0.67 0.20 0.12 0.35 �0.18 �0.14 0.20 0.16

Fe 0.49 0.56 0.27 0.21 0.11 �0.09 0.40 0.13

Pb 0.60 0.16 0.1 0.13 0.19 0.06 0.16 0.11

Mg �0.01 0.04 �0.15 0.36 0.03 0.82 0.00 0.04

Mn 0.20 0.40 0.39 0.00 0.47 0.13 0.39 0.06

Mo 0.29 �0.10 �0.04 0.28 0.39 �0.04 0.18 0.21

Ni 0.89 0.08 0.07 0.01 0.16 �0.01 0.04 �0.02

P 0.22 �0.04 �0.05 0.03 0.84 �0.10 �0.14 0.11

K 0.10 0.43 0.12 0.69 0.04 0.26 �0.08 �0.15

Se 0.60 0.10 0.58 0.12 0.07 0.04 0.04 �0.03

Si 0.11 0.78 0.19 �0.02 �0.13 �0.06 �0.05 �0.02

Na 0.06 0.00 0.00 �0.02 �0.09 0.88 0.13 0.06

Sr 0.26 0.37 �0.05 0.44 �0.03 30.00 0.23 0.00

S �0.03 0.08 0.91 0.12 �0.04 �0.12 0.03 0.03

Ti 0.17 0.84 0.21 0.12 �0.09 �0.01 0.21 �0.03

V 0.62 0.13 0.53 0.04 0.06 0.13 0.24 �0.01

Zn 0.80 0.12 0.19 0.05 0.33 0.08 0.17 0.12

Table 5

Estimated mean PM2.5 contributions (standard error in parenthesis based on the PM2.5 regression standard error) and percentage from

four common major factors identified in each of the three monitors using APCA and PMF (as matched with corresponding APCA

factor for comparison)

Factor A Factor B Factor C Factor D

Suggested source(s) Soil Secondary sulfate Traffic Residual Oil/

incineration

Common species Al, Ca, Fe, Si, Ti NH4, S OC, EC (not at NYBG),

K

Ni, V, NO3/ Cl, Pb, Zn

Factor # for each

monitor’s solution (see

Tables 2–4)

NYBG: Factor 2 IS52:

Factor 1 QC: Factor 2

NYBG: Factor 3 IS52:

Factor 2 QC: Factor 3

NYBG: Factor 4 IS52:

Factor 5 QC: Factor 4

NYBG: Factor 1 IS52:

Factor 3 QC: Factor 1

Est. Mean PM2.5

contribution (mgm�3)

NYBG 2.2 (0.3) 14% 5.6 (0.3) 35% 2.5 (0.1) 16% 4.2 (0.4) 27%

IS52 2.9 (0.4) 18% 6.7 (0.4) 42% 6.2 (0.4) 39% 1.8 (0.4) 11%

QC 1.6 (0.3) 11% 6.8 (0.3) 45% 5.5 (0.3) 36% 1.8 (0.2) 12%

PMF results as matched

to APCA factors

NYBG 0.4 (0.1) 3% 5.0 (0.2) 32% 3.2 (0.1) 20% 2.7 (0.2) 17%

IS52 0.8 (0.5) 5% 4.3 (0.4) 27% 3.5 (0.9) 22% 3.0 (0.5) 19%

QC 1.1 (0.5) 7% 6.0 (0.5) 40% 5.1 (0.8) 34% 2.2 (0.5) 15%

K. Ito et al. / Atmospheric Environment 38 (2004) 5269–52825278
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Table 6

Inter-correlation among source-apportioned PM2.5 : APCA and PMF results

n.a.A n.a.B n.a.C n.a.D i.a.A i.a.B i.a.C i.a.D q.a.A q.a.B q.a.C q.a.D n.p.A n.p.B n.p.C n.p.D i.p.A i.p.B i.p.C i.p.D q.p.A q.p.B q.p.C q.p.D

n. a. A 1.00

n. a. B 0.03 1.00

n. a. C 0.04 0.00 1.00

n. a. D 0.01 �0.01 �0.01 1.00

i.a.A 0.86 0.08 0.21 0.01 1.00

i. a. B 0.05 0.83 �0.02 0.21 0.02 1.00

i.a.C �0.03 �0.02 0.80 0.06 0.02 �0.02 1.00

i.a.D �0.09 �0.07 �0.07 0.79 �0.01 0.010 �0.02 1.00

q. a. A 0.85 �0.03 0.27 �0.04 0.88 �0.05 0.11 �0.07 1.00

q.a.B 0.12 0.78 0.14 0.21 0.13 0.83 0.10 0.03 0.07 1.00

q.a.C �0.03 �0.02 0.70 0.00 0.06 0.01 0.73 �0.10 0.03 0.00 1.00

q. a. D �0.01 0.02 �0.06 0.76 �0.01 0.21 0.03 0.76 �0.02 0.10 0.01 1.00

n. p. A 0.91 �0.10 0.15 �0. 11 0.82 �0.16 0.02 �0.13 0.89 �0.03 �0.03 �0. 14 1.00

n. p. B 0.28 0.82 0. 11 �0.09 0.29 0.79 0.03 �0.25 0.21 0.81 0.08 �0.14 0. 15 1.00

n. p. C �0.07 �0.07 0.95 0.02 0.09 �0.08 0.84 �0.07 0.14 0.09 0.75 �0.06 0.02 0.04 1.00

n. p. D �0.01 0.29 0.08 0.78 0.02 0.42 0.12 0.71 �0.02 0.43 0.03 0.75 �0.09 0.08 0.04 1.00

i. p. A 0.61 0.07 0.08 0.21 0.67 0.00 �0.02 0.07 0.54 0.09 0.06 0.05 0.52 0.13 0.06 0.04 1.00

i.p.B 0.18 0.78 0.09 �0.13 0.22 0.77 0.01 �0.26 0.13 0.72 0.04 �0.20 0.08 0.93 0.01 0.01 0.08 1.00

i.p.C 0.15 0.21 0.26 0.32 0.10 0.28 0.65 0.25 0.10 0.28 0.34 0.35 0.04 0.17 0.27 0.34 0.09 0.17 1.00

i.p.D 0.02 0.39 0.06 0.70 0.03 0.52 0.11 0.49 �0.02 0.53 0.00 0.56 �0.09 0.21 0.05 0.85 0.17 0.13 0.35 1.00

q.p.A 0.83 �0.07 0.25 �0.14 0.84 �0.13 0.11 �0.17 0.93 �0.03 0.05 �0.13 0.93 0.15 0.12 �0.07 0.49 0.07 0.07 �0.07 1.00

q.p.B 0. 19 0.82 0.10 0.00 0.20 0.82 0.05 �0.18 0.11 0.91 0.05 �0.09 0.04 0.93 0.03 0.21 0.08 0.87 0.21 0.34 0.03 1.00

q.p.C 0. 13 0.12 0.38 0.25 0.15 0.26 0.42 0.12 0.05 0.25 0.72 0.27 0.00 0. 18 0.39 0.27 0.16 0.10 0.47 0.24 0.03 0.20 1.00

q.p.D 0.01 0.09 0.06 0.76 �0.01 0.28 0.13 0.70 0.01 0.27 0.03 0.85 �0.07 -0.09 0.05 0.90 0.00 �0.17 0.35 0.77 �0.05 0.03 0.27 1.00

The column/row notation: (1).(2).(3): (1)is monitor: ‘n’ for NYBG; ‘i’ for IS52; and ‘q’ for QC; (2) is method: ‘a’ for APCA; ‘p’ for PMF; (3) is the source type A, B, C, and D, as

noted in Table 5.The numbers in bold indicate correlation among the same factor category.
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Fig. 4. Time-series plots of source-appointed PM2.5 (mgm�3) by APCA (solid line) and PMF (dotted line): QC data.
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in conducting source-orientd evaluation of PM health

effects, but several complications of this approach needs

to be considered. The monitor-to-monitor correlation of

the source-apportioned PM2.5 mass concentrations for

the four major source types were generally moderately

high (r40:7), but varied from the consistently high

correlation for the secondary aerosol factor (r: range

0.72–0.93) to the highly variable correlation for the

‘‘traffic-related’’ factor (r: range 0.26–0.95). The variable

range of monitor-to-monitor correlation for the ‘‘traffic-

related’’ factor also is an indication of larger uncertainty

in naming this factor ‘‘traffic-related’’ for the exposure

estimate for the entire city. The variable range is also

expected from the lower correlation of this factor’s
constituent, EC. For the secondary aerosols, the range

of correlation (0.72–0.93) meant that monitor-to-moni-

tor correlation for the source-apportioned PM2.5 was

lower than the correlation for the individual tracer

species for this source (NH4 and S). Because a factor (or

a principal component) is a linear combination of

individual z-transformed species, the resulting factor

may be noisier than the individual tracer species. In such

cases, it may be more desirable to rotate the solution

by targeting towards a single known tracer species. On

the other hand, for other source types, it is also possible

that a factor analysis can ‘‘extract’’ out an underlying

source ‘‘signal’’ factor several tracer species that are

individually noisy. This issue also complicates the use of
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source-apportioned PM in the health effects analysis. If

one species in the chemical mixture of PM were the

causal agent, then source-apportioned PM (which is

‘‘noisy’’ due to the influence from other species) would

not predict the adverse health effects as precisely as the

responsible specie would. On the other hand, if a certain

mixture of PM from a particular source were more toxic

than its individual constituents alone, then the source-

apportioned PM would be better correlated with health

outcomes. This issue needs further investigation.

While the monitor-to-monitor correlation of source

apportioned PM2.5 were often comparable across the

four major source types found in this study, the mean

mass contribution estimated for each source types varied

by up to several fold (worst for soil, for which estimated

mass concentrations were relatively low), except in the

case of the secondary aerosols. The implication is that,

except for secondary aerosols, if these source appor-

tioned PM were used in time-series analysis of mortality

or morbidity data, the absolute health risk estimates (per

unit mass concentration) for each source type could vary

by several fold, depending on which monitor’s data were

used. This is an issue that needs to be closely examined,

especially when the absolute risk estimates per unit mass

concentration for each source types are compared across

different cities in which only a monitor or a few

monitors are used. Such estimates need to take into

consideration the variability of source-apportioned PM

levels within that city.

We initially used APCA to analyze the data, and later

also analyzed the same data with PMF. We could have

also used UNMIX (e.g., see Lewis et al., 2003), but our

schedule did not permit us to do so. Ramadan et al.

(2000) summarized disadvantages of PCA-based analy-

sis including its inability to incorporate uncertainty

information and to address below-detection-limit data.

Poissant (1994) also pointed out, through an example,

that APCA might bias results. In the analysis of real

data, if we attempt to estimate the population exposure

to PM source types, there are several factors that can

lead to differing solutions including: (1) the difference

in model; (2) the options chosen within a model; and,

(3) the choice of a monitor (where multiple monitors are

available). We could not conduct a comprehensive

analysis to determine relative importance of these

factors, but we could describe the magnitude of

variability in source-apportioned PM concentration

estimates due to the difference in the model and the

choice of monitors. The results generally suggest that

variability of results in the mean mass contributions

between the APCA and PMF approaches were roughly

comparable to the variability due to the location of

monitors. Since our PMF analysis did not take a full

advantage of the use of actual analytical uncertainty of

measurements, this was not a full comparison of the two

approaches. Nevertheless, these two approaches did not
show a substantial or systematic difference in results.

Overall, similar results and conclusions were achieved

with either method.

The implication of the results of our study is that a

source-oriented evaluation of PM health effects needs

to take into consideration the uncertainty associated

with spatial representative of the species measured at a

monitor. It is possible that associations between a

source-type and health outcome is distorted or not

detected due to the error associated with the estimation

of exposure for that source-type. The extent of such

errors can be estimated when multiple monitors exist in

a city. We suggest that a comprehensive assessment be

conducted to investigate the relative uncertainty asso-

ciated with each source type using the newly available

PM2.5 chemical speciation network.
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